关键字:PSA制氮,碳分子筛 二十世纪五十年代,伴随着工业革命的大潮,碳材料的应用越来越广泛,其中活性碳的应用领域扩展最快,从最初的过滤杂质逐渐发展到分离不同组份。与此同时,随着技术的进步,人类对物质的加工能力也越来越强,在这种情况下,碳分子筛应运而生。六十年代,碳分子筛在美国最先制造成功并很快推广应用,最初,碳分子筛是被用作从空气中分离氧气的吸附剂,后来逐渐应用在制取氮气的装置上。到了七十年代未、八十年代初,世界各国对氮气的需求量不断增加,而变压吸附制氮技术也逐渐成熟起来,进一步推动了碳分子筛制造技术的发展。二十世纪五十年代,伴随着工业革命的大潮,碳材料的应用越来越广泛,其中活性碳的应用领域扩展最快,从最初的过滤杂质逐渐发展到分离不同组份。与此同时,随着技术的进步,人类对物质的加工能力也越来越强,在这种情况下,碳分子筛应运而生。六十年代,碳分子筛在美国最先制造成功并很快推广应用,最初,碳分子筛是被用作从空气中分离氧气的吸附剂,后来逐渐应用在制取氮气的装置上。到了七十年代未、八十年代初,世界各国对氮气的需求量不断增加,而变压吸附制氮技术也逐渐成熟起来,进一步推动了碳分子筛制造技术的发展。到了一九八二年,美国和日本的氮气产量相继超过了氧气,此时,变压吸附制取的氮气已经占氮气总产量的18%左右,由于变压吸附制氮所占的市场份额越来越大,世界各主要工业国家都投入了资金研发变压吸附用碳分子筛,其中,美国、日本、德国在技术上处于领先地位。一直到今天,世界上主要的碳分子筛生产厂家也还是分布在这些国家。比较著名的有美国的Calgon公司、普莱克斯公司;日本的岩谷公司、武田公司;德国的BF公司等。其中,美系分子筛在国内所占市场份额很小,德系和日系分子筛厂家在国内都有代理公司,因而所占市场份额也是最大的。碳分子筛的原料为椰子壳、煤炭、树脂等,第一步先经加工后粉化,然后与基料揉合,基料主要是增加强度,防止破碎粉化的材料;第二步是活化造孔,在600~1000温度下通入活化剂,常用的活化剂有水蒸气、二氧化碳、氧气以及它们的混合气。它们与较为活泼的无定型碳原子进行热化学反应,以扩大比表面积逐步形成孔洞活化造孔时间从10~60min不等;第三步为孔结构调节,利用化学物质的蒸气:如苯在碳分子筛微孔壁进行沉积来调节孔的大小,使之满足要下面以一粒分子筛为例,简单了解一下它的内部的孔结构:如图中所示,在分子筛吸附杂质气体时,大孔和中孔只起到通道的作用,将被吸附的分子运送到微孔和亚微孔中,微孔和亚微孔才是真正起吸附作用的容积。我们知道,利用碳分子筛变压吸附制氮是靠范德华力来分离氧气和氮气的,因此,分子筛的比表面积越大,孔径分布越均匀,并且微孔或亚微孔数量越多,吸附量就越大;同时,如果孔径能尽量小,范德华力场重叠,对低浓度物质也有更好的分离作用。因此,在PSA制氮设备中,分子筛的性能直接关系到整套设备的产气量及能耗,所以,选择合适的吸附剂是重中之重。瑞气公司从1979年研制PSA制氮设备开始,从来就没有停止过选择性能优异的分子筛的脚步,每当厂家有新的分子筛品种研制成功,瑞气总是第一个拿到样品并进行测试。总的说来,分子筛按照性能差异,大至分四个阶段:第一阶段的碳分子筛由于制造工艺的限制,孔径分布很不均匀只能制得纯度为97%、98%左右的氮气,回收率只有26%~34%,能耗较高;第二阶段的碳分子筛性能有所提高,可以制得99.9%以上纯度的氮气,但能耗相当惊人,不具备大规模应用的条件,这个阶段的分子筛在制取97%、98%纯度氮气时,回收率达到了37%~42%,已经得到了广泛的应用。第三阶段分子筛随着加工技术的提高,性能也取得了长足进步,能一次性制得99.99%以上纯度的氮气(如果采用瑞气的不等势交叉均压流程,能一次性制得99.999%以上纯度的氮气),在制取99.5%纯度氮气时,回收率达到了40%,比较有代表性的分子筛如德国BF-185、日本武田3K-172、岩谷2GN-H等,都具备了这样的水准。第三代分子筛也是目前应用最普遍的分子筛,国内大多数厂家都在选用。瑞气是一家从事气体设备及气体产品应用研究开发的专业公司,是中国常温空分领域的领导品牌和功勋企业。公司的核心业务包括:气体设备+气体产品。上海瑞气始创于1979年,在常温空分应用领域,我们拥有40年的经验,始终坚持为客户创造价值的理念,为全球气体及气体设备领域提供独特的产品、服务、技术咨询和解决方案。在中国,瑞气50多个营销分支机构、100多个服务网点遍布30多个省市;在全球,瑞气的营销遍及东南亚、中东、欧洲和南美,产品远销20多个国家,在石油、化工、煤矿、冶金、轮胎、医疗、食品、航空等行业得到广泛应用。我们的用户来自各行各业,其中包括BOC、普莱克斯、空气化工产品、杜邦、住友、一汽、中石化、中海油、青岛啤酒、燕京啤酒、上海造币厂、内蒙古亿利化学及全国各矿业集团等。 |