变压吸附(PSA)制氮技术,具有能耗低、低噪音、无污染、操作简便、性能稳定等优点。可满足各种用气需要,在冶炼、金属加工、石化工业、电子工业、食品行业、仓储运输、等众多领域得到广泛使用。变压吸附制氮机是以空气为原料,利用分子筛吸附剂对空气中氮、氧不同的吸附性能,在常温下变压吸附(简称PSA)制取氮气。主要结构由空气净化系统,自动控制系统,制氮系统、氮气储罐等部分构成。碳分子筛是由碳组成的多孔物质,孔结构模型为无序堆积碳素结构。它分离空气的能力,取决于空气中各种气体在碳分子筛微孔中的不同扩散速度或不同的吸附力。由于氧分子通过碳分子筛微孔系统的狭窄空隙的扩散速度比氮分子快得多。因此,当加压时它对氧优先吸附,而氮则被富集成高纯度气体。变压吸附制氮机正是利用这一特性,采用加压吸附、减压解吸的方式实现氮氧分离。变压吸附法通常使用两塔并联,交替进行加压吸附和解压再生,从而获得连续的氮气流。PSA制氮机工艺流程压缩后的空气经空气贮存缓冲罐进入活性碳过滤器,除去油和水,然后经过冷干机干燥冷却卸压再经过级精密过滤后进入两个吸附塔。PSA制氮工艺流程是采用在常温下变压吸附(即PSA)为无热源的吸附分离过程,碳分子筛对吸附组合(主要是氧分子)的吸附容量因其分压升高而增加,因其分压的下降而减少。这样,碳分子筛在加压时吸附,减压时解吸,放出被吸附的部分,使碳分子再生,形成循环操作。变压吸附过程,循环操作包括:吸附、均压、降压、释放、冲洗,然后再充压、吸附几个工作阶段,形成循环操作过程。PSA制氮装置根据流程的再生压力不同,可分为真空再生和常压再生流程。在两种流程中,原料空气经无油空压机压缩调压后,进入除油系统和冷却器,再经干燥进入碳分子筛吸附塔,吸附塔的上部排出产品氮气,被吸附的氧气直接排放到大气中,实现碳分子筛的再生。篇二:PSA变压吸附制氮原理制氮机制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。制氮机是按变压吸附技术设计、制造的氮气设备。制氮机以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。PSA变压吸附制氮原理PSA变压吸附制氮原理碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。深冷制氮不仅可以生产氮气而且可以生产液氮,满意需要液氮的工艺要求,并且可在液氮贮槽内贮存,当出现氮气间断负荷或空分设备小修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道满意工艺装置对氮气的需求。深冷制氮的运转周期(指两次大加温之间的间隔期)一般为年以上,因此,深冷制氮一般不考虑备用。而变压吸附制氮只能生产氮气,无备用手段,单套设备不能保证连续长周期运行。空气经压缩机压缩过滤后进入高分子膜过滤器,由于各种气体在膜中溶解度和扩散系数不同,导致不同气体在膜中相对渗透速率不同。根据这一特性,可将各种气体分为“快气”和“慢气”。当混合气体在膜两侧压力差的作用下,渗透速率相对快的气体,如水、氢气、氦气、硫化氢、二氧化碳等透过膜后,在膜的渗透侧被富集,而渗透速率相对较慢的气体,如甲烷、氮气、一氧化碳和氩气等气体则被滞留在膜的侧被富集,从而达到混合气体分离的目的。主要分类深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183,后者的为-196),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(3分钟)、增容方便等优点,它特别适宜于氮气纯度98%的中、小型氮气用户,有最佳功能价格比。而氮气纯度在98%以上时,它与相同规格的PSA制氮机相比价格要高出15%以先进的技术,独特的气流分布器,使气流分布更均匀,高效地利用碳分子筛,20分钟左右即可提供合格的氮气。设备结构紧凑、整体撬装,占地小无需基建投资,投资少,现场只需连接电源即可制取氮气。PSA工艺是一种简便的制氮方法,以空气为原料,能耗仅为空压机所消耗的电能,具有运行成本低、能耗低、效率高等优点。进口PLC控制全自动运行,氮气流量压力纯度可调并连续显示,可实现无人值守。PARent;">ABSolute;top:0;border:0;width:undefinedpx;height:undefinedpx;" SANdbox="allow-forms allow-pointer-lock allow-popUPS allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-top-navigation-by-user-activation" frameborder="0" src="https://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-6745515041074118&ouTPUt=html&adk=1812271804&adf=3279755396&plat=1%3A32776%2C2%3A32776%2C9%3A32776%2C10%3A32%2C11%3A32%2C16%3A8388608%2C17%3A32%2C24%3A32%2C25%3A32%2C30%3A1081344%2C32%3A32%2C40%3A32&guci=2.2.0.0.2.2.0.0&format=0x0&url=https%3A%2F%2Fwww.bizrobot.com%2Fcompany_bloginfo.php%3Fact%3D1&ea=0&flash=0&pra=5&wgl=1&adsid=NT&dt=1599457660506&bpp=13&bdt=409&idt=308&shv=r20200831&cbv=r20190131&ptt=9&saldr=aa&cookie=ID%3D1c60b48c4792805a%3AT%3D1595560829%3AS%3DALNI_MYSeohwPY4vIG8z40emq6iz0uBTbw&nras=1&correlator=8680008259837&frm=23&ife=1&pv=1&ga_vid=33629398.1599457661&ga_sid=1599457661&ga_hid=1038787181&ga_fc=0&iag=3&icsg=42&nhd=1&dssz=4&mdo=0&mso=0&u_tz=480&u_his=6&u_java=0&u_h=720&u_w=1280&u_ah=682&u_aw=1280&u_cd=24&u_nplug=3&u_nmime=4&adx=-12245933&ady=-12245933&biw=1263&bih=611&isw=730&ish=360&ifk=2699508910&scr_x=0&scr_y=0&eid=21066807&oid=3&pvsid=2734227679274316&pem=459&ref=https%3A%2F%2Fwww.bizrobot.com%2Fcompany_bloginfo.php&rx=0&eae=2&fc=1920&brdim=0%2C0%2C0%2C0%2C1280%2C0%2C1280%2C682%2C730%2C360&vis=1&rsz=%7C%7Cs%7C&abl=NS&fu=8204&bc=31&ifi=0&uci=0.d5ey0mxcdiuv&fsb=1&dtd=330" marginwidth="0" marginheight="0" vspace="0" hspace="0" allowtransparency="true" scrolling="no" allowfullscreen="true" data-google-container-id="0.d5ey0mxcdiuv" data-load-complete="true"> |